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What are we covering today?

1. Impedance analogy

2. Mobility analogy

3. Impedance characteristics

4. Q-factor

5. Tutorial questions
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A weekly fact about Salford..!

Did you know...

• Salford is home to the first artificial canal in Britain! Opened in 1761, the

Bridgewater Canal was the first artificial waterway fully independent of natural

rivers. It was commissioned by Francis Egerton, 3rd Duke of Bridgewater, to

transport coal from his mines in Worsley (posh part of Salford) to Manchester. It

revolutionised the transportation system in England, and paved the way for the

industrial revolution.
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Impedance analogy



Impedance analogy

• For the impedance analogy we think of:

- Force as being analogous to voltage F → V

- Velocity as being analogous to current u → I

• By drawing this particular equivalence we preserve the analogy between

mechanical and electrical impedance:

ZM → ZE (1)

• But, the topology of our problem is lost... i.e. mechanical system is arranged

differently to its analogous electrical circuit

• Another popular one is called the mobility analogy...

3



Impedance analogy

Element Impedance analogy Mobility analogy

Mass
Mass ↔ Inductor

ZM = jωMM ↔ ZE = jωLE

Spring
Spring ↔ Capacitor

ZM = 1
jωCM

↔ ZE = 1
jωCE

Damper
Damper ↔ Resistor

ZM = RM ↔ ZE = RE
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Impedance analogy: mass-spring-damper

• Use analogy between mechanical and

electrical components to model mechanical

systems as electric circuits.

• To draw equivalent circuit first recall the

definition of impedance analogy:

F → V u → I (2)

• Note that the mass, spring and damper all

have the same velocity, because they are

connected together...

M [kg]

C [m/N] R [Ns/m]

F

u

u = 0

Figure 1: Mass-spring-damper.
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Impedance analogy: mass-spring-damper

• Using AC circuit theory we can easily calculate the impedance of the mechanical

system,

ZM = jωMM +
1

jωCM
+RM (3)

• Mechanical velocity given by,

u =
F

ZM
=

F

jωMM + 1
jωCM

+RM
(4)

F

u RM CM

MM

Figure 2: Mass-spring-damper

equivalent circuit
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Impedance analogy: mass-spring-damper

• Using equivalent circuit we can

calculate the velocity of the mass,

u =
F

jωMM + 1
jωCM

+RM
(5)

• As expected, the response looks just

like an LCR circuit!
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Figure 11: Velocity response of a mass-spring

system.
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Mobility analogy



Mobility analogy

• For the impedance analogy we made the following equivalences:

- Force as being analogous to voltage F → V (drop parameter)

- Velocity as being analogous to current u → I (flow parameter)

• But there is no reason why we cant consider the opposite!

• For the mobility analogy we make the following equivalences:

- Force as being analogous to current F → I (flow parameter)

- Velocity as being analogous to voltage u → V (drop parameter)
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Mobility analogue: mass

• Mechanical impedance is

ZM =
F

u
= jωMM (6)

• Mechanical mobility is

YM =
u

F
=

1

ZM
=

1

jωMM
(7)

• According to the mobility analogy

u

F
→ V

I

1

jωMM
→ 1

jωCE
(8)

MF

a

Figure 12: Mass element.
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Mobility analogue: spring

• Mechanical impedance is

ZM =
F

u
=

1

jωCM
(9)

• Mechanical mobility is

YM =
u

F
=

1

ZM
= jωCM (10)

• According to the mobility analogy

u

F
→ V

I
jωCM → jωLE (11)

F
x

x = 0

Figure 13: Spring element.
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Mobility analogue: damper

• Mechanical impedance is

ZM =
F

u
= RM (12)

• Mechanical mobility is

YM =
u

F
=

1

ZM
=

1

RM
(13)

• According to the mobility analogy

u

F
→ V

I

1

RM
→ RE (14)

F

u

u = 0

Figure 14: Damping element.
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Impedance/mobility analogies: summary

Element Impedance analogy Mobility analogy

Mass
Mass ↔ Inductor

ZM = jωMM ↔ ZE = jωL

Mass ↔ Capacitor

1
ZM

= 1
jωMM

↔ ZE = 1
jωCE

Spring
Spring ↔ Capacitor

ZM = 1
jωCM

↔ ZE = 1
jωCE

Spring ↔ Inductor

1
ZM

= jωCM ↔ ZE = jωLE

Damper
Damper ↔ Resistor

ZM = RM ↔ ZE = RE

Damper ↔ Resistor

1
ZM

= 1
RM

↔ ZE = RE
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Mobility analogy: mass-spring-damper

• Use analogy between mechanical and

electrical components to model mechanical

systems as electric circuits.

• To draw equivalent circuit first recall the

definition of mobility analogy:

F → I u → V (15)

• Note that the mass, spring and damper all

have the same velocity, because they are

connected together...

M [kg]

C [m/N] R [Ns/m]

F

u

u = 0

Figure 15: Mass-spring-damper.
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Mobility analogy: mass-spring-damper

• Using AC circuit theory we can easily calculate the impedance of the mechanical

system,

ZE =

(
1

jωCM
+ jωMM +RM

)−1

→ YM =
1

ZM
(16)

• Mechanical velocity given by,

u =
F

ZM
=

F

jωMM + 1
jωCM

+RM
(17)

u

F

MM1/RM CM Figure 16:

Mass-spring-damper

equivalent circuit
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Impedance vs. mobility analogy

• Impedance analogy

- Retain the equivalence between impedance in the two domains

- Topology of the circuit is not obvious (different layout to mechanical system)

• Mobility analogy

- Loose the equivalence between impedance in the two domains

- Topology of the circuit is the same as the layout of mechanical system

• Both circuits describe the same physical system (mass-spring-damper) but the

roles or force and velocity are interchanged - they are the ‘dual’ of one another.

• Depending on the problem one may be more useful than the other...
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Equivalent circuits: impedance vs. mobility

• Impedance:

F → V u → I (18)

• Mobility:

F → I u → V (19)

F

u RM CM

MM u

F

MM1/RM CM

Figure 17: Equivalent circuits: impedance vs. mobility 16



Equivalent circuits: taking the dual

1. Replace inductors (with inductance L) with capacitors (with capacitance C) - and

vice versa.

2. Replace resistors (with resistance R) with resistors of reciprocal resistance (1/R).

3. Replace the constant voltage sources with a constant current sources.

4. Parallel components become series and series components become parallel.

F

u RM CM

MM u

F

MM1/RM CM

Figure 8: Equivalent circuits: impedance vs. mobility 17



Equivalent circuits: rules for taking the dual

• Have a go, take the dual of the following circuits:
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Impedance characteristics



Impedance: a common language

• Electrical impedance is the measure of the opposition that a circuit presents to

a current when a voltage is applied

ZE =
V

I
(20)

• Mechanical impedance is a measure of how much a structure resists motion

(velocity) when subjected to a force

ZM =
F

u
(21)

• Acoustic impedance is a measure of the opposition that a system presents to

the acoustic flow (volume velocity) when subjected to acoustic pressure

ZA =
p

U
(22)
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Impedance: resistance vs. reactance

• Impedance is generally a complex quantity. It has a real part and an imaginary

part.

Z = R+ jX (23)

• Real part is called the resistance - R - describes energy dissipation

• Imaginary part is called reactance - X - describes energy storage

• Mass-spring-damper example:

ZM = jωMM +
1

jωCM
+RM → RM + j

(
ωMM − 1

ωCM

)
(24)
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Impedance: what does it look like

• Consider mechanical impedance of

mass-spring-damper system

ZM = RM + j

(
ωMM − 1

ωCM

)
(25)

• When reactive parts are equal and

opposite they cancel out - all that’s

left is the resistive part

• At resonance the impedance is a

minimum

100 101 102 103 104
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|

Figure 9: Impedance curves for mass, spring

and damper. 21



Impedance: low damping

• Consider mechanical impedance of

mass-spring-damper system

ZM = RM + j

(
ωMM − 1

ωCM

)
(26)

• Low damping

RM << ωcM =
1

ωcCM
(27)

• Sharp notch at resonant frequency -

minimum opposition to motion
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Figure 10: Impedance for low damping.
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Impedance: high damping

• Consider mechanical impedance of

mass-spring-damper system

ZM = RM + j

(
ωMM − 1

ωCM

)
(28)

• High damping

RM >> ωcM =
1

ωcCM
(29)

• Broad minimum over range of

frequencies

100 101 102 103 104
100

101

102

103

Frequency [Hz]

|Z
|

Figure 11: Impedance for high damping.
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Velocity response

• The velocity is inversely proportional

to impedance

u =
F

ZM
(30)

• Larger damping (dashed plot) - lower

velocity

• Lower damping (solid plot) - larger

velocity

100 101 102 103 104

10−3

10−2

10−1

100

Frequency [Hz]

|u
|

Figure 12: Velocity response.
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Q-factor



How do we quantify ‘peakyness’?

• Damping clearly effects the sharpness

of a resonant peak

• We quantify the ‘peakyness’ or

sharpness by what we call the Q-factor

Q =
ωc

∆ω
=

ωc

ω1 − ω2
(31)

• ∆ω is the full half power bandwidth -

i.e. when |u|2 = |umax|2/2 or

|u| = |umax|/
√
2
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Figure 13: Velocity response.
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How do we quantify ‘peakyness’?

• Damping clearly effects the sharpness

of a resonant peak

• We quantify the ‘peakyness’ or

sharpness by what we call the Q-factor

Q =
ωc

∆ω
=

ωc

ω1 − ω2
(32)

• ∆ω is the full half power bandwidth -

i.e. when |u|2 = |umax|2/2 or

|u| = |umax|/
√
2
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Figure 14: Velocity response.
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How do we quantify ‘peakyness’?

• We want an equation for Q in terms of

mechanical (or electrical/acoustical)

component values - 3 steps:

1. Find resonant frequency ωc

2. Find frequencies that have half power

3. Plug into definition!

Q =
ωc

∆ω
=

ωc

ω1 − ω2
(33)

4. Do a little algebra...
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Figure 15: Velocity response.
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How do we quantify ‘peakyness’?

• Definition of Q factor

Q =
ωc

∆ω
=

ωc

ω1 − ω2
(34)

• In terms of component values

Q =
MM

RM

√
1

MMCM
=

1

RM

√
MM

CM
(35)

• Explore limits

- As R → ∞, Q → 0

- As R → 0, Q → ∞
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Figure 15: Velocity response.

28



How do we quantify ‘peakyness’?

• Q factor is also measure of how far

the impedance at resonance is from a

point reactive impedance

Q =
ωcMM

R
=

ZMM

ZMR
(36)

• Q factor can be used to define three
regimes

- Q > 1
2 under-damped

- Q < 1
2 over-damped

- Q = 1
2 critically-damped
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Figure 16: Impedance for high damping.
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Next week...

• Equations of motion - transient and stready state analysis

• Acoustic domain

• Reading:

- Mechanical domain: lecture notes, chp. 4, pg. all
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